
Ripple	Inter	Server	Protocol	built	on	a
single-hop	synchronization	mechanism
Johan	Nygren,	@BipedalJoe

Ripple	is	a	person-to-person	money	system	that	was	invented	by	Ryan	Fugger	in
2003/2004.	Ripple	as	a	money	system	is	unique	in	that	the	bookkeeping	only	needs
consensus	at	the	person-to-person	level,	and	thus	it	is	possible	to	design	and	build	a
Ripple	Inter	Server	Protocol	where	the	computation	also	only	needs	consensus	at	the
person-to-person	level	(thus	a	person	could	run	their	own	isolated	server	and	share
state	only	with	their	trusted	relationships,	if	they	wanted	to).	For	this	to	be	possible,
consensus	at	the	person-to-person	level	must	be	guaranteed.	The	issue	with	person-
to-person	decision	making	over	the	internet	is	the	“two	general	problem”,	that	it	is
impossible	to	be	certain	about	if	an	acknowledgement	was	delivered.	Thus	it	follows
that	agreement	is	impossible.	The	solution	to	the	two-general	problem	is	to	agree	on	a
single	general.	The	ideal	way	to	do	so,	is	to	take	turns	being	the	general.

Lockstep,	a	single-hop	consensus	mechanism

People	in	a	trustline-relationship	agree	to	take	turns	to	be	“general”	who	gets	to	say
which	transaction	should	happen	next.	They	coordinate	this	with	the	use	of	a	counter,
and	agree	that	one	person	will	validate	when	counter	mod	2	is	0	and	the	other	when	
counter	mod	2	is	1.	The	person	who	is	not	the	“general”	at	a	turn	can	propose
transactions	to	the	“general”.	Each	person	stores	the	instruction	they	last	validated	in
permanent	storage	until	they	receive	the	next	rounds	validated	transaction	(thus
continuity	is	guaranteed.)	In	permanent	storage	you	thus	maintain	a	turn	bit	(0	or	1)
for	counter	mod	turnbit,	and	a	turn	counter	for	same	operation,	and	the	last	validated
instruction	(an	instruction	being	a	command	with	arguments).	The	“state	transition
function”	in	Lockstep	includes	incrementing	the	turn	counter	and	setting	the	last
validated	instruction,	as	well	as	the	state	changes	that	the	instruction	performed,	and
is	“atomic”,	all-or-nothing.	Thus,	two	accounts	are	in	perfect	agreement	over	every
decision	that	they	make.

Integrating	Lockstep	with	the	role	as	an	intermediary

With	single-hop	guaranteed,	two-hop	at	an	intermediary	is	guaranteed	since	it	is	on	a
single	machine.	But	it	still	has	to	be	organized	practically,	on	that	machine.	A	simple
approach	is	that	the	command	handler	returns	an	“inter-lockstep”	callback.	This
callback	is	executed	only	if	the	Lockstep	state	transition	succeeded.	Since	such
callback	could	fail,	it	is	ideally	combined	with	“failsafe”	routines.	For	example,	a
callback	that	queues	a	transaction	could	fail	because	the	queue	is	full.	A	failsafe
routine	can	derive	the	same	decision	from	the	permanently	stored	data,	and	run
periodically	to	catch	any	failures.

Guaranteed	single-hop	consensus	makes	multi-hop	consensus
possible

Lockstep	guarantees	that	any	signal	that	propagates	over	multiple	hops	has	been
agreed	on	by	every	previous	hop.	But	it	does	not	guarantee	that	a	signal	propagates,
nor	is	it	able	to	discover	propagation	failure.	Thus,	multi-hop	agreements	have	to
conform	to	the	fact	that	propagated	signals	can	be	trusted	but	signal	propagation
cannot.	The	fundamentals	are:	assume	perfect	consensus	about	that	propagated
signals	are	honest,	assume	zero	consensus	about	if	a	signal	has	propagated	(i.e.,	the
receiver	can	be	certain,	the	sender	cannot).	It	follows	that	only	the	end	receiver	of	a
signal	can	know	if	an	agreement	succeeded.



Multi-hop	payment	with	honest	signals	but	uncertain	signal
propagation

With	honest	signals	but	uncertain	signal	propagation,	we	can	design	the	steps	for
perfectly	secure	multi-hop	payments.	For	the	important	parts	of	the	payment,	we	rely
on	that	the	end	receiver	of	a	signal	can	be	certain	that	everyone	in	the	chain	has
agreed.	For	our	multi-hop	payments,	we	need	a	few	fundamental	rules.	The	first	rule,
is	that	the	buyer	will	be	the	last	person	with	the	right	to	cancel.	I.e.,	the	sender	has
no	certainty,	and	the	buyer	is	the	only	sender	who	takes	on	a	net	negative	balance.
The	second	rule,	is	that	everyone	else	can	only	cancel	if	their	state	did	not	allow	them
to	propagate	a	signal	futher	(i.e.,	their	payment	request	had	timed	out).	Thus	they	can
refuse	to	accept	a	signal,	but	they	cannot	“take	back”	their	decision	if	they	already
propagated	it.	I.e.,	the	receiver	requires	perfect	certainty.	And	the	third	rule,	since
the	buyer	is	the	last	person	with	the	right	to	cancel,	and,	the	only	one	with	a	net
negative	balance,	the	buyer	will	be	the	“end	receiver”	of	whether	or	not	the	payment
was	agreed	on.

The	first	two	(and	most	important)	steps	then	become	(assuming	a	path	has	already
been	found	and	credit	been	set	aside	with	a	timeout):

1.	 The	buyer	sends	a	“commit”	signal	(over	Lockstep).	On	“commit”	credit	is	set
aside	without	a	timeout	and	in	permanent	storage	(the	timeout	of	the	previous
temporary	commit	has	to	be	considered,	this	can	be	done	in	one	of	three	ways.	)

2.	 When	the	seller	receives	the	“commit”	signal,	they	reply	directly	to	the	buyer
(over	their	direct	channel	that	does	not	use	“Lockstep”)	and	tell	them	to	finalize.

Thus,	for	“commit”	the	signal	travels	in	a	straight	line	from	the	buyer	and	(via	direct
channel	from	seller)	back	to	the	buyer.	The	buyer	becomes	the	end	receiver	of	the
signal,	and	has	perfect	certainty	that	the	agreement	succeeded.	This	is	the	only	signal
where	a	decision	has	to	be	made	based	on	a	multi-hop	consensus.

The	next	step,	does	not	lead	to	any	further	decisions.	Thus,	no	single	person	needs	to
be	told	if	it	succeeded	to	reach	everyon	in	the	chain	or	not.	It	can	propagate
organically.

3.	 When	the	buyer	receives	the	reply,	they	revoke	their	right	to	cancel	(and	at	this
point	the	payment	is	already	set	in	stone),	and	they	send	the	“finalize”	signal.

The	buyer	is	then	done.	They	delete	their	pending	credit	line	(in	“finalize”	command
handler	that	runs	over	Lockstep)	and	add	the	amount	to	their	actual	credit	line	(this
can	potentially	be	done	already	at	step	1).	And	they	are	done.	Had	they	instead
cancelled,	they	would	have	sent	a	“cancel”	signal,	executed	the	“cancel”	command
handler,	removed	their	pending	credit	line,	and	been	done.	In	either	case,	the
responsibility	to	propagate	falls	on	the	next	person	in	the	chain	(who	if	the	buyer	did
“cancel”	is	now	the	only	one	with	a	net	negative	balance.)


